

ООО НПК «МИКРОФОР»

ПРЕОБРАЗОВАТЕЛЬ ИЗМЕРИТЕЛЬНЫЙ ВЛАЖНОСТИ И ТЕМПЕРАТУРЫ С ТОКОВЫМИ ВЫХОДАМИ 4-20 мА

ДВ2ТТ20-Г

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

ЦАРЯ.2553.004-05 РЭ

1. ВВЕДЕНИЕ

- 1.1. Настоящее руководство по эксплуатации, объединенное с техническим описанием и паспортом, является документом, удостоверяющим гарантированные предприятием-изготовителем основные параметры и технические характеристики измерительных преобразователей влажности и температуры ДВ2ТТ20-Г (далее преобразователей).
- 1.2. Документ позволяет ознакомиться с устройством и принципом работы преобразователей и устанавливает правила эксплуатации, соблюдение которых обеспечивает поддержание их в постоянной готовности к действию.
- 1.3. Преобразователь является средством измерений с межповерочным интервалом 1 год. Номер в ФИФОЕИ 25948-11.
- 1.4. Преобразователь изготовлен в соответствии ТУ 4321-008-77511225-2010.
- 1.5. ДВ2ТТ20-Г является полным аналогом преобразователя интерфейса ПИТ20, выпускаемого ООО НПК «МИКРОФОР». Для их конфигурирования используется одно и то же программное обеспечение.

2. НАЗНАЧЕНИЕ

- 2.1. Измерительные преобразователи влажности и температуры предназначены для непрерывного преобразования температуры и относительной влажности газообразных сред в унифицированный токовый выходной сигнал 4-20 мА.
- 2.2. Преобразователи в зависимости от комплектации могут быть использованы в составе многоканальных измерительных систем или совместно с вторичными приборами различного назначения для измерения:
 - относительной влажности и температуры воздуха в жилых, складских и производственных помещениях, свободной атмосфере;
 - относительной влажности и температуры воздуха в климатических камерах и свободной атмосфере;
 - влагосодержания воздуха, азота, инертных и других неагрессивных газов, применяемых в различных технологических процессах промышленности, энергетики и сельского хозяйства.
- 2.3. По устойчивости к механическим воздействиям и по защищенности от воздействия окружающей среды преобразователи выполнены в обыкновенном исполнении по ГОСТ Р 52931-2008. Степень защиты от проникновения воды, пыли и посторонних твердых частиц по ГОСТ 14254:

- для преобразователя интерфейса ДВ2ТТ20-Г	IP20
- для преобразователей исполнений -А, -Б и -АК (исполнений 1 и 2).	IP50
- для преобразователей исполнения -АК (исполнение 3)	IP53
- для корпуса преобразователя исполнения -В	IP64
- для погружной части преобразователя исполнения -В	IP50
2.4. Рабочие условия применения преобразователя интерфейса:	
- температура, °С	. 050;

- относительная влажность, % до 80 (до 70 при 35...50°C);

- атмосферное давление, кПа	. 86	.106.
Рабочие условия применения преобразователей ДВ2ТСМ:		
0.0		2 7

- температура, °С согласно п.3.7
- относительная влажность, % от 0 до 98%*
- атмосферное давление, к Π а от 84 до 106,7
- *- метрологические характеристики при относительной влажности выше 90% обеспечиваются только при кратковременном (не более 2 часов) пребывании преобразователя при этих условиях. Для преобразователей ДВ2ТСМ в исполнении 5Π рабочие условия применения от 0 до 100% относительной влажности без ограничения времени пребывания при высокой влажности;
 - ** только для погружной части преобразователей исполнения -В.
- 2.5. Анализируемые газы не должны содержать механических примесей, аэрозолей и паров масел в количествах, превышающих санитарные нормы для производственных помещений, а также коррозионно-активных примесей.

3. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ

- 3.1. В состав преобразователя входят измерительный преобразователь влажности и температуры ДВ2ТСМ с двухпроводным интерфейсом µForLAN и преобразователь интерфейса µForLAN в два токовых выхода ДВ2ТТ20-Г, соединяемые между собой гибким двух или трехпроводным кабелем (в зависимости от исполнения ДВ2ТСМ). Преобразователь интерфейса выполнен в стандартном корпусе для монтажа на DIN-рейку.
- 3.2. Измерительные преобразователи влажности и температуры ДВ2ТСМ, подключаемые к преобразователю интерфейса, изготавливаются в конструктивных исполнениях в соответствии с таблицей 1.

Таблица 1.

Исполнение	Примечание		
	Преобразователи в прямоугольном корпусе с вынесенным		
A\xxx	цилиндрическим зондом влажности и температуры длиной ххх,		
	выбираемой из ряда 80, 250, 500 или 1000 мм (рис.1).		
AK	Преобразователи в прямоугольном корпусе с вынесенными на кабеле		
AK	раздельными зондами влажности и температуры (рис.2)		
Преобразователи в цилиндрическом корпусе длиной ххх, выбир			
D\XXX	ряда 80, 250, 500 или 1000 мм (рис.3)		
В	Преобразователи погружного типа для измерений при избыточном		
Б	давлении (рис 4).		
Γ	Преобразователи в прямоугольном корпусе с вынесенным неразъемном		
	кабеле зондом с чувствительными элементами влажности и температуры		
	(рис.5)		

3.3. Габаритные размеры измерительных преобразователей влажности и температуры ДВ2ТСМ, подключаемых к преобразователю интерфейса, приведены в таблице 2.

Конструктивное исполнение	Габаритные размеры корпуса	Габаритные размеры
преобразователя	преобразователя, мм	зонда, мм
ДВ2ТСМ-А	35×50×75	Ø12×80(1000)*
ДВ2ТСМ-АК	37×90×120	влажности Ø12×90 температуры Ø4,5×56
ДВ2ТСМ-Б	-	Ø12×80(1000)*
ДВ2ТСМ-В	Ø24×105	
ДВ2ТСМ-Г	75×55×36	Ø12×85

^{* -} оговаривается при заказе преобразователя из ряда 250, 500 и 1000 мм.

Рис.1. Измерительный преобразователь ДВ2ТСМ-А (исполнение А).

Рис.2. Измерительный преобразователь ДВ2ТСМ-5Т-5П-АК (исполнение АК) исполнений 2 (слева) и 3 (справа).

Рис.3. Измерительный преобразователь ДВ2ТСМ-Б (исполнение Б).

Рис.4. Измерительные преобразователи ДВ2ТСМ-В (исполнение В).

Рис.5. Измерительный преобразователь влажности и температуры ДВ2ТСМ- Γ (исполнение Γ).

3.4. Преобразователь ДВ2ТСМ-5Т-5П-АК изготавливается в трех конструктивных исполнениях:

Исполнение 1. Длина кабеля между измерительным блоком и выносными зондом влажности и термопреобразователем сопротивления — 1,5 м. Подключение кабеля для питания и съема выходного сигнала к преобразователю осуществляется к клеммной колодке внутри корпуса преобразователя через гермоввод.

Исполнение 2. Длина кабеля между измерительным блоком и выносными зондом влажности и термопреобразователем сопротивления — 1,5 м. Подключение кабеля для питания и съема выходного сигнала к преобразователю осуществляется через цилиндрический разъем.

Для исполнений 1 и 2 выносные зонды устанавливаются на кронштейне и размещаются в контролируемом объеме, например, внутри климатической камеры. При этом измерительный блок устанавливается вне климатической камеры.

Исполнение 3. Преобразователь с защитным экраном для контроля относительной влажности и температуры в свободной атмосфере. Экран предохраняет измерительный преобразователь от прямых солнечных лучей и дождя. Специальное покрытие устойчиво к воздействию окружающей среды и ультрафиолетовому излучению. Длина кабеля между измерительным блоком и выносными зондом влажности и термопреобразователем сопротивления — 0,4 м. Подключение кабеля для питания и съема выходного сигнала к преобразователю осуществляется через влагозащищенный разъем. Преобразователь устанавливается на общий кронштейн с выносными зондами и крепится двумя винтами к кронштейну с экраном. Кронштейн с защитным экраном устанавливается на вертикальной трубе или стене. При техническом обслуживании преобразователь легко отделяется от экрана.

- 3.5. Длина соединительного кабеля между преобразователем интерфейса и измерительными преобразователями зависит от типа кабеля и уровня электромагнитных помех. Для кабеля типа ШТЛ-2(3) (двух- или трехпроводный неэкранированный телефонный кабель) в отсутствии электромагнитных помех максимальная длина кабеля не более 200 м.
 - 3.6. Масса преобразователя не более 0,4 кг.
 - 3.7. Диапазон измерений:

относительной влажности

- *- метрологические характеристики при относительной влажности выше 90% обеспечиваются только при кратковременном (не более 2 часов) пребывании преобразователя при этих условиях

температуры

- 3.8. Пределы допускаемой основной абсолютной погрешности измерения относительной влажности при температуре 23°C приведены в таблице 3.

Таблица 3.

Модифи	Пределы допускаемой основной абсолютной погрешности измерения
кация	относительной влажности в диапазоне относительной влажности
1Π	в диапазоне относительной влажности от 0 до 90% ±2%
	в диапазоне относительной влажности от 90 до 98% $\pm 3\%$ *
2Π	в диапазоне относительной влажности от 0 до 90% $\pm 1\%$
	в диапазоне относительной влажности от 90 до 98% $\pm 2\%$ *
4Π	в диапазоне относительной влажности 010% $\pm (0.025 \pm 0.0875\Pi)\%$
	в диапазоне относительной влажности 1075% $\pm (0.7+0.02\Pi)\%$
	где Π – измеренное значение относительной влажности, $\%$
5Π	$\pm 2\%$

^{* –} метрологические характеристики при относительной влажности выше 90% обеспечиваются только при кратковременном (не более 2 часов) пребывании преобразователя при этих условиях.

Примечание 1. Пределы допускаемой абсолютной погрешности измерения относительной влажности в диапазоне температур свыше 60°C не нормируются.

Примечание 2. Величина абсолютной погрешности измерения влажности зависит от условий эксплуатации преобразователя. При эксплуатации преобразователя в условиях сильной загрязненности необходимо применение защитного фильтра и его периодическая чистка или замена.

3.9. При эксплуатации преобразователя в условиях высокой влажности и температуры (кроме ДВ2ТСМ-5Т-5П-АК) необходима периодическая юстировка. Рекомендуемая периодичность юстировки в зависимости от условий эксплуатации приведены на рис.6-7.

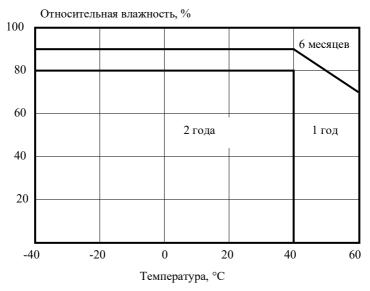


Рис. 6. Зависимость рекомендуемой периодичности юстировки от условий эксплуатации преобразователя.

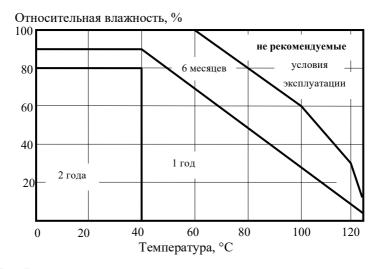


Рис. 7. Зависимость рекомендуемой периодичности юстировки от условий эксплуатации преобразователя (для исполнения 6Т).

Таблица 4.

Модификация	Пределы допускаемой основной абсолютной
	погрешности измерения температуры, °С
1T, 2T	$\pm 0,3$
3T	в диапазоне температур от -40 до -20°C ±1
	в диапазоне температур от -20 до +60°C ±0,3
6T	в диапазоне температур от 0 до $+60^{\circ}$ С ± 0.3
	в диапазоне температур от +60 до +125°C $\pm 0,7$
5Т-5П-АК	в диапазоне температур от -40 до 0°С $\pm (0,2+0,01 T)$
	в диапазоне температур от 0 до $+60^{\circ}$ С ± 0.2
	где T – измеренное значение температуры, °C

3.12. Пределы допускаемой дополнительной абсолютной погрешности измерения относительной влажности при изменении температуры приведены в табл.5.

Таблица 5.

Модифи	Пределы допускаемой дополнительной абсолютной погрешности	
кация	измерений относительной влажности при изменении температуры на	
	1°C, %	
1П, 2П	$\pm 0,1$	
4Π	в диапазоне относительной влажности от 0 до $10\% \dots \pm (0,005+0,0045\Pi)$	
	в диапазоне относительной влажности от 10 до 75% $\pm 0,1$	
5Π	$\pm (0.002+0.0002\Pi),$	
	где П – измеренное значение относительной влажности, °C	

3.13. Постоянная времени

- 3.15. Потребляемый ток без нагрузки на токовых выходах, мА не более 15
- 3.16. Преобразователь имеет два токовых выхода 4-20 мА.
- 3.17. Сопротивление нагрузки токовых выходов, Ом не более 500.
- 3.18. На каждый токовый выход может быть выведен любой из следующих параметров:
- для модификаций преобразователей ДВ2ТСМ исполнений A, Б, B (кроме ДВ2ТСМ-1Т-4П-B), AK, Γ :
 - относительная влажность в % по воде;
 - относительная влажность в % по воде/льду;
 - температура точки росы в °С;

- температура точки росы/инея в °C (при отрицательных значениях будет выводиться точка инея, при положительных точка росы);
- объемная доля влаги в ppm (преобразователь должен находиться при атмосферном давлении).
- температура в °С;
- для модификации ДВ2ТСМ-1Т-4П-В:
 - относительная влажность в % по воде/льду при рабочем давлении;
 - относительная влажность в % по воде/льду (при использовании ПДВ-8) с приведением показаний к нормальным (1 бар абс.) условиям с учетом текущего давления анализируемого газа;
 - относительная влажность в % по воде/льду (при использовании ПДВ-8) с приведением показаний к стандартным (7 бар изб.) условиям с учетом текущего давления анализируемого газа;
 - температура точки росы/инея в °С при рабочем давлении;
 - температура точки росы/инея в °C с приведением показаний к нормальным (1 бар абс.) условиям с учетом текущего давления анализируемого газа;
 - температура точки росы/инея в °C с приведением показаний к стандартным (7 бар изб.) условиям с учетом текущего давления анализируемого газа;
 - массовая концентрация влаги в г/м³ при рабочем давлении;
 - массовая концентрация влаги в г/м³ с приведением показаний к нормальным (1 бар абс.) условиям с учетом текущего давления анализируемого газа;
 - массовая концентрация влаги в Γ/M^3 с приведением показаний к стандартным (7 бар изб.) условиям с учетом текущего давления анализируемого газа;
 - объемная доля влаги в ppm (преобразователь должен находиться при атмосферном давлении, либо при наличии пробоотборного устройства ПДВ-8);
 - температура в $^{\circ}$ С;
 - избыточное давление в кгс/см 2 (при наличии пробоотборного устройства ПДВ-8);
- 3.19. Выводимые параметры определяются при конфигурировании преобразователя (см. п.6).
- 3.20. Приведение к давлению может осуществляться либо при использовании пробоотборного устройства ПДВ-8, либо при вводе рабочего давления в измерительный преобразователь (только для модификации 4П).
- 3.21. Значения выводимого параметра, соответствующие минимальному PL (4 мА) и максимальному PH (20 мА) выходному току задаются Пользователем при конфигурировании токовых выходов (см. п.6).
- 3.22. Примеры зависимостей выходного тока от значений *PL* и *PH* для различных параметров приведены в таблице 6.

Параметр	Значение тока, мА
относительная влажность Ψ , %	$I = 4 + \frac{16 \cdot (\Psi - PL)}{(PH - PL)}$
точка росы/инея <i>Td</i> , °C	$I = 4 + \frac{16 \cdot (Td - PL)}{(PH - PL)}$
температура Т, °С	$I = 4 + \frac{16 \cdot (T - PL)}{(PH - PL)}$

4. СОСТАВ ПРЕОБРАЗОВАТЕЛЯ И КОМПЛЕКТ ПОСТАВКИ

- 4.1. В состав преобразователя ДВ2ТТ20-Г входят измерительный преобразователь влажности и температуры ДВ2ТСМ с цифровым выходным сигналом по двухпроводному интерфейсу µForLan и протоколу Modbus и преобразователь интерфейса µForLan в токовые выходные сигналы.
 - 4.2. Комплект поставки преобразователя приведен в таблице 7.

Таблица 7.

Наименование изделия или документа	Обозначение	Приме
		чание
Преобразователь интерфейса ДВ2ТТ20-Г	ЦАРЯ.2553.004-05	
Измерительный преобразователь влажности и температуры ДВ2ТСМ	ЦАРЯ.2553.004-0X	(1)
Соединительный кабель	ЦАРЯ.3660.021	(2)
Кольцо уплотнительное фторопластовое 23×17×2	ЦАРЯ.711141.102	(3), (4)
Пробоотборное устройство ПДВ	ЦАРЯ.2748.00Х	(4), (5)
Руководство по эксплуатации	ЦАРЯ.2553.004-05 РЭ	(6)
USB-кабель типа А-В		(6)
Компакт-диск с программным обеспечением		(6), (4)
Блок питания 24 B		(4)
Упаковка	ЦАРЯ.4170.010	

Примечания:

- (1) при заказе оговаривается исполнение и модификация измерительного преобразователя ДВ2ТСМ;
- (2) длина соединительного кабеля оговаривается при заказе преобразователя, стандартная длина кабеля 4 м;
- (3) поставляется только с преобразователем исполнения -В;
- (4) поставляется по запросу Заказчика;
- (5) см. соответствующее руководство по эксплуатации;
- (6) допускается партию преобразователей, поставляемых одному Заказчику, комплектовать одним экземпляром.

- 4.3. С преобразователями дополнительно может поставляться вспомогательное оборудование для их юстировки и поверки (более подробная информация доступна на сайте microfor.ru).
 - 4.4. Обозначение преобразователей при заказе:

ДВ2ТТ20-Г с преобразователем

1	2	3	4	5
ДВ2ТСМ	-X	-X	-X	-X/y

- 1 модификация измерительного преобразователя;
- 2 исполнение по рабочему диапазону температур:
- 3 Исполнение по допустимой основной абсолютной погрешности измерения относительной влажности;
 - 4 конструктивное исполнение:
 - 5 тип зашитного колпачка:
- II ажурный из нержавеющей стали с пористым колпачком из фторопласта (поры около 1 мкм);
 - III пористый из спеченной нержавеющей стали (поры около 25 мкм);
 - у длина соединительного кабеля, м (стандартная длина 4м)

Пример обозначения преобразователя при заказе:

ДВ2ТТ20-Г с преобразователем ДВ2ТСМ-1Т-1П-Б/080-III/20

- измерительный преобразователь влажности и температуры с токовыми выходами 4-20 мА с преобразователем ДВ2ТСМ-Б длиной 80 мм, рабочий диапазон температур от 0 до 60°С, предел допускаемой основной абсолютной погрешности измерения относительной влажности $\pm 2\%$ ($\pm 3\%$ выше $\pm 90\%$ RH), пористым защитным колпачком из нержавеющей стали и соединительным кабелем длиной 20 м.

5. УСТРОЙСТВО И РАБОТА

- 5.1. В состав преобразователя входят измерительный преобразователь влажности и температуры ДВ2ТСМ с цифровым выходным сигналом по двухпроводному интерфейсу μ ForLan, протоколу Modbus и преобразователь интерфейса μ ForLan в токовые выходные сигналы.
- 5.2. В преобразователе ДВ2ТСМ для измерения относительной влажности используется сорбционно-емкостной чувствительный элемент, работа которого основана на зависимости диэлектрической проницаемости полимерного влагочувствительного слоя от влажности окружающей среды. Для измерения температуры используется полупроводниковый термистор.
- 5.3. Преобразователь ДВ2ТСМ также содержит схему обработки и выдачи сигналов, осуществляющую следующие функции:
 - измерение сигнала по каналам влажности и температуры;
 - вычисление значений относительной влажности и температуры;
 - температурная коррекция значения относительной влажности;
 - поддержка протокола Modbus.

- 5.4. Преобразователь интерфейса µForLan в токовые выходные сигналы выполнен в стандартном корпусе для установки на DIN-рейке и содержит USB-разъем для конфигурирования преобразователя и съемные клеммные колодки для подключения кабеля питания, измерительного преобразователя ДВ2ТСМ и съема токовых сигналов.
 - 5.5. Преобразователь интерфейса выполняет следующие функции:
- поддержка протокола Modbus при взаимодействии с измерительным преобразователем или персональным компьютером;
 - вычисление значений выходных токов;
 - управление источниками тока.
- 5.6. Для подсоединения напряжения питания и съема выходных сигналов преобразователь интерфейса оснащен клеммными колодками.

6. КОНФИГУРИРОВАНИЕ

- 6.1. Для конфигурирования ДВ2ТТ20-Г требуется программное обеспечение ДВ2ТТ20-DIN.2011, которое доступно в разделе «Загрузки» на странице microfor.ru/products/catalog/humidity-transducers/dv2tt20-g, либо на компакт-диске, который может входить в комплект поставки (см. п.4.2).
- 6.2. Для работы программы ДВ2ТТ20-DIN.2011 требуется персональный компьютер под управлением операционной системы Windows 7 и выше, соответствующий системным требованиям для установленной операционной системы.
- 6.3. Программа распространяется по лицензионному соглашению, опубликованному в разделе «Поддержка Загрузка» на сайте <u>microfor.ru</u>.
- 6.4. Для конфигурирования преобразователя выполните следующие операции:
- 6.4.1. Подключите кабель к USB-порту персонального компьютера.
- 6.4.2. Подключите второй конец кабеля к преобразователю интерфейса.
- 6.4.3. После запуска файла **snsetup.exe** из папки **ДВ2ТТ20-DIN.2011**, вы увидите главное окно программы (рис.8).



Рис. 8. Окно программы конфигурирования при запуске.

6.4.4. Установите номер СОМ-порта, к которому подключен преобразователь, и нажмите кнопку «Установить связь». Номер порта можно определить в окне «Диспетчер устройств», добраться до которого можно из панели управления Windows: «Панель управления\Все элементы панели управления\Система...». Кликнув по строке «Порты (СОМ и LPT)», вы

увидите в строке «Silicon Labs CP210x USB to UART Bridge (COM2)» номер порта (COM2 на рис.9). Номер порта может отличаться.

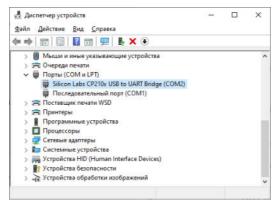


Рис.9. Окно Диспетчера устройств.

6.4.5. Если номер СОМ-порта установлен правильно, окно программы конфигурирования примет вид, показанный на рис. 10.

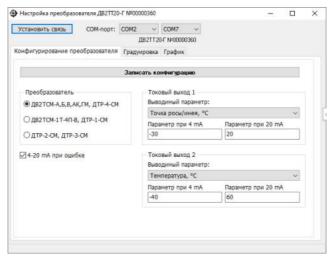


Рис.10. Окно программы конфигурирования после установления связи с преобразователем.

6.4.6. Если появилось сообщение:

проверьте правильно ли введен номер СОМ-порта.

- 6.4.7. Конфигурирование токовых выходов осуществляется на вкладке «Конфигурирование преобразователя». В колонках Р1 и Р2 установите метки напротив параметров, выводимых на первый и второй токовые выходы. Установите в соответствующих окнах значения выбранных параметров при значениях выходного тока при 4 и 20 мА.
- 6.4.8. Нажмите кнопку «Записать конфигурацию». Для проверки правильности записи нажмите кнопку «Установите связь» и проверьте правильно ли записались выбранные параметры.
- 6.4.9. Отключите преобразователь от кабеля для связи с ПК.
- 6.5. Вкладка «Градуировка» предназначена для юстировки преобразователя интерфейса. Для исключения возможности несанкционированного изменения настройки преобразователя, вход в этот режим осуществляется по паролю. Методика юстировки преобразователя интерфейса и измерительного преобразователя влажности поставляется по запросу.

7. ПОРЯДОК УСТАНОВКИ

- 7.1. Разместите измерительный преобразователь влажности и температуры ДВ2ТСМ непосредственно в месте измерения относительной влажности и температуры воздуха.
- 7.2. Не рекомендуется размещать измерительный преобразователь вблизи предметов, выделяющих тепло (отопительные системы и пр.).
- 7.3. Преобразователь интерфейса рассчитан на монтаж на DIN-рейке вдали от силовых щитов и оборудования, создающих сильные электромагнитные и электрические поля.
- 7.4. Подключение напряжения питания, измерительного преобразователя и токовых входов к преобразователю интерфейса осуществляют к съемным клеммным колодкам, расположенным на верхнем и нижнем торце блока.
- 7.5. Установочные размеры преобразователя интерфейса показаны на рис.11.
- 7.6. Назначение клеммных контактов блока индикации приведено в таблице 8.
- 7.7. В зависимости от исполнения измерительные преобразователи ДВ2ТСМ подключаются к блоку преобразователя интерфейса, строго соблюдая полярность, двухпроводным (рис. 12) или трехпроводным (рис.13) кабелем. Корпусной контакт разъема измерительного преобразователя (-) или белый провод для преобразователя с кабельным выходом подключаются к клеммному гнезду «7»-«GND». Центральный контакт разъема измерительного преобразователя (+) или красный провод для преобразователя с кабельным выходом подключаются к клеммному гнезду «6»-«LINE». Категорически запрещается подключать любой из проводников измерительного преобразователя ДВ2ТСМ в исполнении А, Б и В (кроме ДВ2ТСМ-1Т-4П-В) к клеммному гнезду «8»- «+12V».

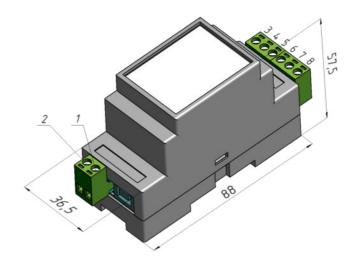


Рис.11. Преобразователь интерфейса µForLan в токовые выходные сигналы.

Таблица 8.

Контакт	Назначение контакта	Функция	
1	Питание преобразователя интерфейса +24B	Питание преобразователя интерфейса 24B±10%	
2	Питание преобразователя интерфейса 0В	постоянного тока, 60 мА	
3	Токовый выход 1	Т	
4	Общий	Токовые выходы 4-20 мА	
5	Токовый выход 2	4-20 MA	
6	Линия связи с преобразователем «Line»	Подключение	
7	Питание преобразователей 0В	измерительного	
8	Питание преобразователей +12B	преобразователя	

- 7.8. Подключение преобразователя ДВ2ТТ20-Г к источнику питания и вторичным измерительным устройствам осуществляется по четырем проводам по одной паре подается напряжение питания (цепи «1»-«+24V» и «2»-«GND»), по другой осуществляется съем токовых выходных сигналов. Подключение преобразователя к измерительной системе или вторичному прибору осуществляется согласно инструкции по эксплуатации последнего. Схема подключения преобразователя приведена на рис.12 и рис.13.
- 7.9. Токовые выходы являются активными (не токовая петля). Запрещается подключать питание к токовым выходам.
- 7.10. Не допускается совместная прокладка кабеля между измерительным преобразователем, преобразователем интерфейса и вторичным устройством совместно с силовыми цепями.
- 7.11. Схема распайки кабеля для преобразователей ДВ2ТСМ-1Т-1П-В приведена на рисунке 14.

7.12. Схемы распайки кабеля для преобразователей ДВ2ТСМ-5Т-5П-АК и ДВ2ТСМ-1Т-4П-В приведены на рисунках 15 и 16.

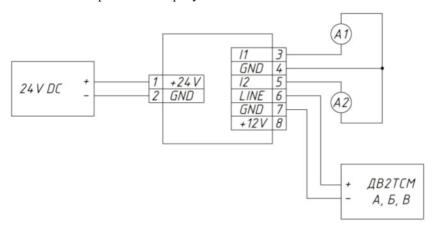


Рис.12. Подключение к блоку интерфейса измерительных преобразователей ДВ2ТСМ в исполнении A, Б и B.

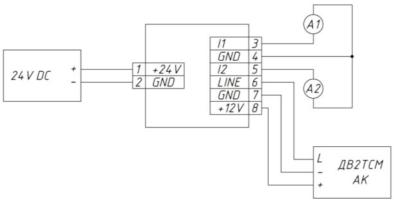


Рис.13. Подключение к блоку интерфейса измерительных преобразователей ДВ2ТСМ-1Т-4П-В и ДВ2ТСМ в исполнении АК и Γ .

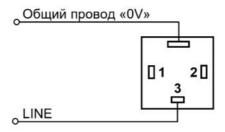


Рис.14. Схема «распайки» кабеля (вид со стороны «распайки» розетки) для подключения ДВ2ТСМ-1Т-1П-В.

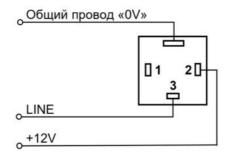


Рис.15. Схема «распайки» кабеля (вид со стороны «распайки» розетки) для подключения ДВ2ТСМ-5Т-5П-АК исполнения 3 и ДВ2ТСМ-1Т-4П-В.

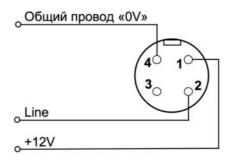


Рис.16. Схема «распайки» кабеля (вид со стороны «распайки» розетки) для подключения ДВ2ТСМ-5Т-5П-АК исполнения 2 и ДВ2ТСМ-6Т-1П-Г.

7.13. Если измерительный преобразователь влажности и температуры ДВ2ТСМ отключен от преобразователя интерфейса и установлена галочка в окне «4-20 мА при ошибке» (рис.10), то он начинает попеременно с интервалом 32 с выдавать

на токовые выходы значения тока 4 мА и 20 мА. Если галочка не установлена, на выходах преобразователя устанавливается значение тока 0 мА.

8. ПОДКЛЮЧЕНИЕ ПРЕОБРАЗОВАТЕЛЯ ИСПОЛНЕНИЯ -В К ГАЗОВОЙ МАГИСТРАЛИ

Установочные и габаритные размеры преобразователя ДВ2ТСМ-1Т-1П-В приведены на рис.17.

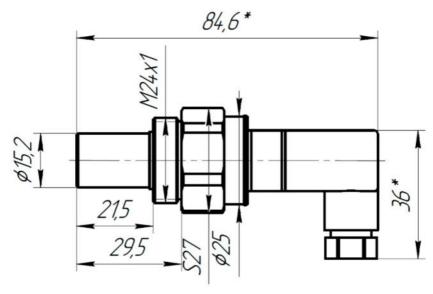


Рис.17. Установочные и габаритные размеры преобразователя ДВ2ТСМ-1Т-1П-В.

Подключение преобразователя к газовой магистрали осуществляется при помощи пробоотборного устройства ПДВ, поставляемого вместе с преобразователем по запросу Потребителя, либо проточной камеры, изготовленной Потребителем в соответствии с конкретными условиями эксплуатации.

Конструкция фланца (установочной части камеры) для подключения преобразователя показана рис.18. Для изготовления камеры необходимо использовать материалы, слабо адсорбирующие влагу, например, нержавеющую сталь.

ВНИМАНИЕ! При выборе фитингов и подводящей газовой арматуры учитывайте максимальное давление газа в линии. Установку фитингов проводите в соответствии с указаниями производителя. Неправильная установка или превышение максимального давления газа для фитингов и арматуры представляет опасность!

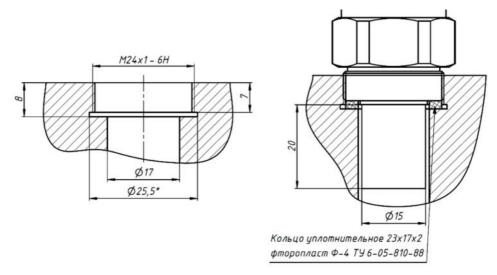


Рис.18. Конструкция фланца для подключения измерительного преобразователя ДВ2ТСМ-В к газовой магистрали.

9. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

- 9.1. После включения питания преобразователь готов к работе через несколько секунд.
- 9.2. Показания относительной влажности и температуры корректны только, когда температура сенсоров равна температуре анализируемой среды. Поэтому считывание значений относительной влажности и температуры можно производить только при установившихся показаниях температуры.
- 9.3. Чтение показаний с преобразователя осуществляется вторичным устройством устройством для измерения тока. Току 4 мА соответствует минимальное значение в диапазоне измерения (V_H), а току 20 мА максимальное значение (V_B) (если при конфигурировании преобразователя не было задано иного).
- 9.4. Вычисление значения измеренной преобразователем величины $V_{\rm изм}$ производится по формуле (где I ток преобразователя):

$$V_{\text{\tiny M3M}} = V_{\text{\tiny H}} + \frac{(I - 4) \cdot (V_{\text{\tiny B}} - V_{\text{\tiny H}})}{16}$$

10. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Самый уязвимый элемент в любом гигрометре — сенсор влажности. Как правило, в автономных приборах для обеспечения высокого быстродействия он защищен только ажурным пластиковым колпачком, через который свободно проникает пыль и аэрозоли. В результате поверхность сенсора со временем может загрязниться и погрешность измерения влажности превысит допустимые пределы. К такому же результату может приводить наличие в воздухе некоторых агрессивных по отношению к влагочувствительному материалу сенсора веществ (например, паров растворителей).

Аккредитованные на проведение поверки организации обычно не имеют квалификации и технической возможности осуществлять техническое обслуживание термогигрометров, в которое входит очистка сенсора влажности и, при необходимости, юстировка. Они лишь констатируют факт, укладывается ли погрешность измерений в допустимые пределы или нет. А ведь часто причиной оформления извещения о непригодности прибора к применению является слегка загрязненная поверхность сенсора, очистка которой занимает не более минуты.

Мировая практика предполагает два способа решения этих проблем – либо Потребитель осуществляет техническое обслуживание самостоятельно, приобретая дополнительное оборудование и осваивая соответствующие методики (вряд ли это целесообразно при наличии на предприятии всего нескольких приборов), либо техническое обслуживание осуществляется на предприятии-изготовителе.

В связи с вышесказанным настоятельно рекомендуется проводить ежегодное техническое обслуживание преобразователя, включающее тестирование, юстировку (при необходимости), а также последующую поверку на предприятии-изготовителе.

Перечень работ для различных видов технического обслуживания датчика приведен в таблице 9.

11. ПОВЕРКА

Поверка осуществляется по документу ЦАРЯ.2553.004-01 МП «Преобразователи измерительные влажности и температуры ДВ2. Методика поверки», утвержденному Восточно-Сибирским филиалом ФГУП «ВНИИФТРИ» 20 февраля 2020 года.

Подробная информация по отправке преобразователей в поверку на предприятие-изготовитель содержится на сайте $\frac{\text{microfor.ru}}{\text{microfor.ru}}$ в разделе «Услуги – Как сдать приборы в поверку».

12. ГАРАНТИИ ИЗГОТОВИТЕЛЯ (ПОСТАВЩИКА)

- 12.1. Предприятие-изготовитель (поставщик) гарантирует соответствие качества преобразователя ДВ2ТТ20-Г требованиям технических условий ТУ 4321-008-77511225-2010 при соблюдении условий и правил эксплуатации, установленных настоящим Руководством по эксплуатации.
- 12.2. Гарантийный срок эксплуатации 12 месяцев. Срок гарантии отсчитывается от даты отгрузки прибора производителем.

- 12.3. Гарантия не распространяется на приборы:
- имеющие механические повреждения вследствие ненадлежащей эксплуатации или транспортировки;
 - эксплуатируемые вне условий применения.
- 12.4. Гарантийные обязательства не распространяются на услуги по периодической поверке данного средства измерения. Стоимость первичной поверки прибора включена в стоимость прибора.
- 12.5. Предприятие-изготовитель обязуется в течение гарантийного срока безвозмездно устранять выявленные дефекты или заменять вышедшие из строя части или весь преобразователь, если он не может быть исправлен на предприятии-изготовителе.
- 12.6. По всем вопросам гарантийного или послегарантийного обслуживания следует обращаться к Вашему поставщику или на предприятие-изготовитель.

Таблица 9.

Периодичность обслуживания	Содержание работ и метод их проведения	Технические требования	Приборы, инструменты, материалы
Не реже 1 раза в год и перед сдачей в поверку	Осмотр защитного колпачка, поверхности сенсора влажности и места установки сенсоров в преобразователе влажности и температуры	На указанных поверхностях не должно содержаться механических частиц и загрязнений	
При наличии загрязнений на поверхности колпачка, сенсора влажности и места установки сенсоров	Отмывка поверхности сенсора влажности от загрязнений: - отмывка кисточкой в моющем растворе; -промывка в дистиллированной воде; - сушка сжатым воздухом; - промывка спиртом; - сушка сжатым воздухом	На указанных поверхностях не должно содержаться механических частиц и загрязнений	Кисть беличья №3, вода дистиллированна я, раствор моющий нейтральный, спирт изопропиловый ОСЧ
При выходе абсолютной погрешности измерений за пределы, указанные в пп. 3.7, 3.8	Юстировка (см. п.3.10)	Пределы допускаемой абсолютной погрешности измерения отн. влажности по п.3.8, температуры по п.3.11	Приведены в ЦАРЯ.2553.004- 01 МП и разделе 4

13. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 13.1. Преобразователи в упаковке транспортируют в закрытых транспортных средствах любого вида. При транспортировании самолетом преобразователи должны быть размещены в отапливаемом герметизированном отсеке.
 - 13.2. Температура транспортирования от минус 50 до 50°С.
- 13.3. Преобразователи до введения в эксплуатацию следует хранить на складах в упаковке предприятия-изготовителя при температуре окружающего воздуха от 5 до 45°C и относительной влажности до 80% при температуре 25°C.
- 13.4. Без упаковки преобразователи следует хранить при температуре окружающего воздуха от 10 до 35° С и относительной влажности до 80% при температуре 25° С.
- 13.5. В помещениях для хранения не должно быть пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

14. СРОК СЛУЖБЫ

Срок службы преобразователей составляет не менее 6 лет.

Срок службы может быть продлен по решению владельца при условии исправности преобразователей, отсутствии видимых повреждений и успешного прохождения поверки.

15. УТИЛИЗАЦИЯ

По истечении срока службы преобразователи должны подвергаться утилизации в соответствии с нормами, правилами и способами, действующими в месте утилизации.

Запрещается выбрасывать преобразователи вместе с бытовыми отходами.

16. СВЕДЕНИЯ О ДРАГОЦЕННЫХ МАТЕРИАЛАХ

Преобразователи содержат незначительное количество драгметаллов, утилизация которых не представляется экономически целесообразной. В связи с этим сведения о содержании драгметаллов в преобразователях не приводятся, и обязательные мероприятия по подготовке к утилизации не проводятся.

17. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

Измерительные преобразователи влажности и температуры:

ДВ2ТТ20-Г	зав.№	с ДВ2ТСМ	_ТП	зав.№		
ДВ2ТТ20-Г	зав.№	с ДВ2ТСМ	_ТП	зав.№		
ДВ2ТТ20-Г	зав.№	с ДВ2ТСМ	_ТП	зав.№		
ДВ2ТТ20-Г	зав.№	с ДВ2ТСМ	_ТП	зав.№		
ДВ2ТТ20-Г	зав.№	с ДВ2ТСМ	_ТП	зав.№		
ДВ2ТТ20-Г	зав.№	с ДВ2ТСМ	_ТП	зав.№		
ДВ2ТТ20-Г	зав.№	с ДВ2ТСМ	_ТП	зав.№		
ДВ2ТТ20-Г	зав.№	с ДВ2ТСМ	_ТП	зав.№		
ДВ2ТТ20-Г	зав.№	с ДВ2ТСМ	_ТП	зав.№		
ДВ2ТТ20-Г	зав.№	с ДВ2ТСМ	_ТП	зав.№		
соответствуют годными к экс		условиям ТУ	4321-008-77511	225-2010	и призн	аны
производства: Токовы Значени		ответствует		•	выпуске	ИЗ
Значени	ий выход 2: но тока 4 мА со но тока 20 мА со	ответствует				
Дата вы	пуска ""	" 202	Γ.			
Штамп	ОТК:		подпись ответс	твенного	лица	

СОДЕРЖАНИЕ

1.	ВВЕДЕНИЕ	1
2.	НАЗНАЧЕНИЕ	1
3.	ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ	2
4.	СОСТАВ ПРЕОБРАЗОВАТЕЛЯ И КОМПЛЕКТ ПОСТАВКИ	9
5.	УСТРОЙСТВО И РАБОТА	10
6.	КОНФИГУРИРОВАНИЕ	11
7.	ПОРЯДОК УСТАНОВКИ	13
	ПОДКЛЮЧЕНИЕ ПРЕОБРАЗОВАТЕЛЯ ИСПОЛНЕНИЯ -В К АГИСТРАЛИ	
9.	МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ	18
10). ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	19
11	.ПОВЕРКА	19
12	2. ГАРАНТИИ ИЗГОТОВИТЕЛЯ (ПОСТАВЩИКА)	19
13	З. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	21
14	l. СРОК СЛУЖБЫ	21
15	5. УТИЛИЗАЦИЯ	21
16	5. СВЕДЕНИЯ О ДРАГОЦЕННЫХ МАТЕРИАЛАХ	21
17	/ СВИЛЕТЕЛЬСТВО О ПРИЕМКЕ	22

ЗАКАЗАТЬ